Minimax theorems for ANRs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimax Theorems

We suppose that X and Y are nonempty sets and f : X × Y → R. A minimax theorem is a theorem that asserts that, under certain conditions , inf Y sup X f = sup X inf Y f, that is to say, inf y∈Y sup x∈X f (x, y) = sup x∈X inf y∈Y f (x, y). The purpose of this article is to give the reader the flavor of the different kind of mini-max theorems, and of the techniques that have been used to prove the...

متن کامل

Topological Minimax Theorems: Old and New

We review and extend the main topological minimax theorems based on connectedness that have been developed over the years since the pioneering paper of Wu (1959). It is shown in particular that the topological minimax theorems of Geraghty and Lin (1984) are essentially a rediscovery of much earlier results of Tuy (1974), while the latter can be derived from a minimax theorem recently developed ...

متن کامل

Generalized Minimax Theorems On Nonconvex Domains∗

In this paper, the author considers generalized minimax theorems for vector set-valued mappings using Fan-KKM theorem on nonconvex domains of Hausdorff topological vector spaces.

متن کامل

Minimax Theorems in Probabilistic Metric Spaces

The minimax problem is of fundamental importance in nonlinear analysis and, especially, plays an important role in mathematical economics and game theory. The purpose of this paper is to obtain some minimax theorems for mixed lowerupper semi-continuous functions in probabilistic metric spaces which extend the minimax theorems of von Neumann types [1, 3, 4, 5, 6, 8, 10, 11, 12]. As applications,...

متن کامل

Minimax Theorems for Set-Valued Mappings under Cone-Convexities

and Applied Analysis 3 Lemma 2.4 see 9, Lemma 3.1 . Let X, Y, and Z be three topological spaces. Let Y be compact, F : X × Y ⇒ Z a set-valued mapping, and the set-valued mapping T : X ⇒ Z defined by T x ⋃ y∈Y F ( x, y ) , ∀x ∈ X. 2.2 a If F is upper semi-continuous on X × Y, then T is upper semi-continuous on X. b If F is lower semi-continuous onX, so is T. Lemma 2.5 see 9, Lemma 3.2 . Let Z be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1984

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1984-0722434-9